Theoretical Investigations of the Spin Hamiltonian Parameters of ZrSiO₄:Np⁴⁺

Shao-Yi Wu^{a,b} and Hui-Ning Dong^{b,c}

- ^a Department of Applied Physics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- b International Centre for Materials Physics, Chinese Academy of Sciences, Shenyang 110016, P. R. China
- ^c College of Electronic Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, P. R. China

Reprint requests to Dr. S.-Y. W.

Z. Naturforsch. **59a**, 471 – 475 (2004); received May 10, 2004

In this work, the spin Hamiltonian (SH) parameters g_{\parallel} and g_{\perp} , and the hyperfine structure constants A_{\parallel} and A_{\perp} for ZrSiO₄:Np⁴⁺ are investigated on the basis of the perturbation formulas of these parameters for a 5f³ ion in tetragonal (D_{2d}) symmetry. In these formulas, the contributions to the SH parameters from the second-order perturbation terms, the admixtures of various energy levels and the covalency effect are taken into account. The related crystal-field parameters are calculated from the superposition model and the local structural data of the Zr⁴⁺ site occupied by the impurity Np⁴⁺. The calculated SH parameters agree reasonably with the experimental data. The validity of the theoretical results is discussed.

Key words: Electron Paramagnetic Resonance (EPR); Crystal-fields and Spin Hamiltonian; Np⁴⁺; ZrSiO₄.